skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lara_Orozco, Ricardo A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The model follows the convolutional neural network – long-short term memory architecture. Its inputs include sky camera images that are reduced to scalar features to meet data transmission constraints. The model focuses on predicting the deviation of irradiance from the persistence of cloudiness (POC) model. Inspired by control theory, a noise signal input is used to capture the presence of unknown and/or unmeasured input variables and is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation Research Laboratory were used to create three rolling train-validate sets and determine the best representations for time, the optimal span of input measurements, and the most impactful model input data (features). For the chosen validation data, the model achieves a mean absolute error of 74.29 W/m2 over a time horizon of up to two hours, compared to a baseline 134.35 W/m2 using the POC model. 
    more » « less